Энтропия түсінігі

Неліктен мұз ериді, кілегей кофемен араласады?

Бұл үрдістердің бәрі энтропия түсінігімен тікелей байланысты. Энтропия – тұйық термодинамикалық жүйедегі өздігінен жүретін процестің өту бағытын сипаттайтын күй функциясы. Энтропияның күй функциясы екендігі термодинамиканың екінші бастамасында тұжырымдалады. Энтропия ұғымын термодинамикаға 1865 ж. Р.Клаузиус енгізген. 

 Энтропия жүйенің табиғатына тәуелсіз хаостық энтропия өлшемі ретінде универсалды болып табылады. Ашық жүйелер физикасының дамуымен әртүрлі макроскопиялық функциялар ішінде тек қана энтропия оны макроскопиялық жүйелердегі процестерді статистикалық бейнелеу өлшемі ретінде пайдалануға мүмкіндік беретін қасиеттердің жиынтығына ие болады.

1865ж. Рудольф Юлиус Эммануэль Клаузиусв жаңа термодинамикалық шама туралы түсінік енгізген ( еж.– грек. ἐντροπία — бұрылыс, айналу). Бұл шама жылу энергиясын механикалыққа айналдыру, және керісінше айналдыру өлшемі болып табылады. Карно циклінде Q1/T1=Q2/T2. Яғни Q/T қатынасы сақталады. Клаузиус dS=dQ/T дифференциалын енгізген, онда энтропия өсімшесі Т абсолют температурасына жататын dQ жылу энергиясының өзгерісі ретінде анықталады.

Еркінше алынған қайтымды циклды қарастыралық. Циклды бөлшектеу көмегімен, элементарлы Карно циклын шексіз көп санды теңдікті, мына түрде жазуға болады:

dq1T1= dq2T2

Тұйықталған пішін бойынша, интегралдау кезінде және dq2 теріс таңбаларын есептеп табамыз.

ʃdqқайтT1 = 0

1-2 еркінше алынған жол бойындағы интеграл, әр уақытта тең:

Шарт бойынша, жылулықты dq жеткізу процессі қайтымды деп есептеледі. Сонымен, S — функция жағдайы. Оны энтропия деп атайды. Формуладағы 1/T үстіңгі көрсеткішінде тұрған, толық емес дифференциал dq үшін интегралдаушы көбейткіш болады. Еркін қайтымды айналмалы процесс үшін алынған формуладан, энтропия S және абсолютты температура Т бар екендігі туралы тікелей қорытынды шығады да, теңдеумен анықталады, оны қайтымды процесстер үшін, жылу динамикасының екінші заңының теңдеуі деп атайды.

Қайтымды изотермиялық процесс (T=const) кезіндегісін теңдеуден табамыз:

Қайтымды адиабатты процесс кезіндегі, dq=0 болғанда:

ds = 0; S2 — S1 = 0; S = const.

Scroll Up